Another equation for distance So far, we have three equations, which can be written as By combining these together, we can derive a new equation. we start with the first equation: $d = \overline{V} t$ Then, substitute in the second . equation $(\overline{v} = \frac{v_i + v_f}{2})$ $d = \left(\frac{v_i + v_f}{2}\right) t$ Next, substitute in the third $d = \begin{bmatrix} v_i + at + v_i \end{bmatrix} t$ equation $(V_f = at + V_i)$ Finally, we just do some algebra to clean it up: $d = \left[\underbrace{v_i + at + v_i}_{i} \right] t$ $d = \left[\frac{at + 2V_{ij}}{2} \right] t$ $d = \begin{bmatrix} at \\ -z \end{bmatrix} t + \begin{bmatrix} 2Ui \\ -z \end{bmatrix} t$ $\int d = \frac{1}{2}at^2 + Vit$

That equation gives us how far something moved d after a time t when it has a constant acceleration a and an initial velocity V:.

Answer:
$$V_{i} = 0$$
 $a = 3$ $t = 4$
so $d = \frac{1}{2}at^{2} + V_{i}t$
 $d = \frac{1}{2}(3)(4)^{2} + (0)(4)$
 $d = 24 \text{ m}$:

We could have done it the old way, by first finding the final velocity, then the average velocity and then finding the distance: $v_i = 0$ a = 3 t = 4 (1) $v_f = at + v_i \longrightarrow v_f = (3)(4) + 0$ $V_F = 12 \text{ M/s}$ (2) $\overline{v} = \frac{v_i + v_f}{2} \longrightarrow \overline{v} = \frac{0 + 12}{2}$

 $\overline{V} = 6 \frac{m}{3}$

$$(3) d = \overline{v}t \longrightarrow d = (6)(4)$$

$$d = 24 m$$

The new equation is a lot easier.